Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria).

نویسنده

  • Marc E H Jones
چکیده

The Rhynchocephalia are a group of small diapsid reptiles that were globally distributed during the early Mesozoic. By contrast, the only extant representatives, Sphenodon punctatus and S. guntheri (Tuatara), are restricted to New Zealand off-shore islands. The Rhynchocephalia are widely considered to be morphologically uniform but research over the past 30 years has revealed unexpected phenotypic and taxonomic diversity. Phylogenetically "basal taxa" generally possess relatively simple conical or columnar teeth whereas more derived taxa possessed stouter flanged teeth and sophisticated shearing mechanisms: orthal in some (e.g., Clevosaurus hudsoni) and propalinal in others (e.g., S. punctatus). This variation in feeding apparatus suggests a wide range of feeding niches were exploited by rhynchocephalians. The relationship of skull shape to skull length, phylogenetic grouping, habit, and characters relating to the feeding apparatus are explored here with geometric morphometric analysis on two-dimensional landmarks. Principle components analysis demonstrates that there are significant differences between phylogenetic groups. In particular, Sphenodon differs significantly from all well known fossil taxa including the most phylogenetically basal forms. Therefore, it is not justifiable to use Sphenodon as a solitary outgroup when studying skull shape and feeding strategy in squamates; rhynchocephalian fossil taxa also need to be considered. There are also significant differences between the skull shapes of aquatic taxa and those of terrestrial taxa. Of the observed variation in skull shape, most variation is subsumed by variation in dentary tooth base shape, the type of jaw movement employed (e.g., orthal vs. propalinal) and the number of palatal tooth rows. By comparison, the presence or absence of flanges, dentary tooth number and palatal tooth row orientation subsume much less. Skull length was also found to be a poor descriptor of overall skull shape. Compared to basal rhynchocephalians members of more derived terrestrial radiations possess an enlarged postorbital area, a high parietal, and a jaw joint positioned ventral to the tooth row. Modification of these features is closely associated with increased biting performance and thus access to novel food items. Some of these same trends are apparent during Sphenodon ontogeny where skull growth is allometric and there is evidence for ontogenetic variation in diet.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia).

The relationship between skull shape and the forces generated during feeding is currently under widespread scrutiny and increasingly involves the use of computer simulations such as finite element analysis. The computer models used to represent skulls are often based on computed tomography data and thus are structurally accurate; however, correctly representing muscular loading during food redu...

متن کامل

Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling.

Several mutually exclusive hypotheses have been advanced to explain the phylogenetic position of turtles among amniotes. Traditional morphology-based analyses place turtles among extinct anapsids (reptiles with a solid skull roof), whereas more recent studies of both morphological and molecular data support an origin of turtles from within Diapsida (reptiles with a doubly fenestrated skull roof...

متن کامل

MicroRNAs support a turtle + lizard clade.

Despite much interest in amniote systematics, the origin of turtles remains elusive. Traditional morphological phylogenetic analyses place turtles outside Diapsida-amniotes whose ancestor had two fenestrae in the temporal region of the skull (among the living forms the tuatara, lizards, birds and crocodilians)-and allied with some unfenestrate-skulled (anapsid) taxa. Nonetheless, some morpholog...

متن کامل

Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus)

The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, complete...

متن کامل

A New Species of Clevosaurus (lepidosauria: Rhynchocephalia) from the Upper Triassic of Rio Grande Do Sul, Brazil

Well-preserved cranial remains of a small sphenodontian lepidosaur from the Upper Triassic Caturrita Formation of Rio Grande do Sul, Brazil, are the first record of the genus Clevosaurus Swinton, 1939 from South America. They represent a new species, Clevosaurus brasiliensis, which is distinguished by a very short antorbital region of the skull (corresponding to about 20 per cent of skull lengt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of morphology

دوره 269 8  شماره 

صفحات  -

تاریخ انتشار 2008